Radiocarbon Dating Laboratory — BSIP, Lucknow

Facility Overview

Principle of Radiocarbon Dating

Radiocarbon (14 C) is a radioactive isotope of carbon produced in the upper atmosphere. Living organisms continuously exchange carbon with the atmosphere, maintaining a constant 14 C/ 12 C ratio. After death, 14 C decays with a half-life of **5730** ± **40** years (Libby, 1955), enabling measurement of elapsed time since burial.

$$N(t) = N_0 e^{-\lambda t} \Rightarrow t = \frac{1}{\lambda} \ln \left(\frac{N_0}{N(t)} \right)$$

where N(t) = residual ¹⁴C activity N_0 = atmospheric activity λ = decay constant

Conventional Radiocarbon Dating

(Benzene-Prep + Liquid Scintillation Counting Method)

Steps involved:

- 1. **Pretreatment** to remove contaminants (acid–alkali–acid)
- 2. Combustion \rightarrow CO₂ generation
- 3. CO₂ purification
- 4. Synthesis of benzene (C₆H₆) through:
 - o Li₂C₂ formation
 - \circ Hydrolysis \rightarrow acetylene
 - o Catalytic trimerization → benzene
- 5. Scintillation Cocktail preparation with PPO/POPOP
- 6. Measurement in Ultra-Low Background LSC

LSC Principle

Beta decay from ¹⁴C interacts with scintillator \rightarrow light pulses \rightarrow photomultiplier tubes detect counts \rightarrow background correction \rightarrow age calculation using standards.

Liquid Scintillation Counting System

PerkinElmer Quantulus: Ultra-low background α/β spectrometer optimised for environmental and geochronological ¹⁴C samples (Old model, under maintenance)

Upgraded System (Procured)

Quantulus™ GCT-2000 — installation in progress

- **GCT** = Guard Compensation Technology
- Low background via enhanced passive/active shielding
- Time-resolved discrimination of β events
- Improved Minimum Detectable Activity (MDA)
- Reduced counting uncertainties → Higher precision ages

Merits & Limitations of LSC Radiocarbon

Parameter	Advantage	Limitation	
Benzene target	High chemical stability; good optical properties	Requires complex synthesis setup	
Sample size	Suitable for macro samples (1–5 g C)	Not suitable for microscale samples	
Cost	Relatively economical	Limited precision for Late Holocene samples	
Measuring system	Mature method, low background with Quantulus	Needs long counting times	

AMS-Based Radiocarbon Dating at BSIP

We have here at BSIP an **AGE-III** Graphite Preparation System, which is sample prep unit for organic carbon containing samples for AMS based radiocarbon dating. Typically, a sample of less than a gram is required for this method.

Designed for micro- to milli-gram carbon fractions.

Steps involved:

- 1. CO_2 from samples \rightarrow purification
- 2. Reduction to graphite using Fe catalyst
- 3. Direct ¹⁴C/¹²C atom counting by AMS
- 4. Results normalized using standards (Ox-II, IAEA)

Advantages of AMS Route

- Very small sample size (50–500 μg C)
- High precision, better signal-to-background
- We are accepting at present only organic carbon containing samples
- No carbonate shells will be graphitised.
- Faster throughput